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In the context of the two-brane Randall-Sundrum scenario [1] and its supersymmetric

extensions [2 – 4], it is of interest to have a superspace description for five-dimensional

N = 1 conformally flat supergeometry that would be similar to that available in the case

of four-dimensional N = 1 supersymmetry, see, e.g. [5] for a review. This is also an

interesting problem from the point of view of formal supergravity. Such a description can

be derived using the superspace formulation for the Weyl multiplet of 5D N = 1 conformal

supergravity [6, 7], which has recently been given in [8] (building on [9, 10]). Its elaboration

is provided in the present letter. The case of 5D N = 1 anti-de Sitter superspace, which

was studied in [11] from a different perspective, is explicitly worked out as an example.

To start with, it is worth recalling the salient points of the superspace formulation

developed in [8]. Let zM̂ = (xm̂, θµ̂
i ) be local bosonic (x) and fermionic (θ) coordinates

parametrizing a curved five-dimensional N = 1 superspace M5|8, where m̂ = 0, 1, . . . , 4,

µ̂ = 1, . . . , 4, and i = 1, 2. Here the Grassmann variables θµ̂
i obey the standard pseudo-

Majorana reality condition θµ̂
i = θi

µ̂ = εµ̂ν̂ εij θν̂
j (see the appendix in [10] for our 5D

notation and conventions). The tangent-space group is chosen to be SO(4, 1)× SU(2), and

the superspace covariant derivatives DÂ = (Dâ,D
i
α̂) have the form

DÂ = EÂ + ΩÂ + ΦÂ . (1)

Here EÂ = EÂ
M̂ (z) ∂M̂ is the supervielbein, with ∂M̂ = ∂/∂zM̂ ,

ΩÂ =
1

2
ΩÂ

b̂ĉ Mb̂ĉ = ΩÂ
β̂γ̂ Mβ̂γ̂ , Mâb̂ = −Mb̂â , Mα̂β̂ = Mβ̂α̂ (2)

is the Lorentz connection,

ΦÂ = Φ kl
Â

Jkl , Jkl = Jlk (3)

is the SU(2)-connection. The Lorentz generators with vector indices (Mâb̂) and spinor

indices (Mα̂β̂) are related to each other by the rule: Mâb̂ = (Σâb̂)
α̂β̂Mα̂β̂ (for more details,

see the appendix of [10]). The generators of SO(4, 1)×SU(2) act on the covariant derivatives

as follows:1

[Jkl,Di
α̂] = εi(kD

l)
α̂ , [Mα̂β̂,Dk

γ̂ ] = εγ̂(α̂D
k
β̂)

, [Mâb̂,Dĉ] = 2ηĉ[âDb̂] , (4)

where Jkl = εkiεljJij .

The covariant derivatives obey (anti)commutation relations of the general form

[DÂ,DB̂} = TÂB̂
ĈDĈ +

1

2
RÂB̂

ĉd̂Mĉd̂ + RÂB̂
klJkl , (5)

where TÂB̂
Ĉ is the torsion, RÂB̂

ĉd̂ and RÂB̂
kl the SO(4, 1) and SU(2) curvature tensors,

respectively.

To describe the Weyl multiplet of conformal supergravity [6, 7], the torsion has to obey

the constraints [8]:

T i
α̂

j

β̂

ĉ = − 2iεij(Γĉ)α̂β̂, T i
α̂

j

β̂

γ̂
k = T i

α̂b̂
ĉ = 0, Tâb̂

ĉ = Tâβ̂(j
β̂

k) = 0 . (6)

1The operation of (anti)symmetrization of n indices is defined to involve a factor (n!)−1.
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With the constraints introduced, it can be shown that the torsion and the curvature tensors

in (5) are expressed in terms of a small number of dimension-1 tensor superfields, Sij, Xâb̂,

Nâb̂ and Câ
ij , and their covariant derivatives, with the symmetry properties:

Sij = Sji , Xâb̂ = −Xb̂â , Nâb̂ = −Nb̂â , Câ
ij = Câ

ji . (7)

Their reality properties are

Sij = Sij , Xâb̂ = Xâb̂ , Nâb̂ = Nâb̂ , Câ
ij = Câij . (8)

The covariant derivatives obey the (anti)commutation relations [8]:

{
Di

α̂,Dj

β̂

}
= −2i εijDα̂β̂ − i εα̂β̂εijX ĉd̂Mĉd̂ +

i

4
εijεâb̂ĉd̂ê(Γâ)α̂β̂Nb̂ĉMd̂ê

−
i

2
εâb̂ĉd̂ê(Σâb̂)α̂β̂Cĉ

ijMd̂ê + 4iSijMα̂β̂ + 3i εα̂β̂εijSklJkl

−i εijCα̂β̂
klJkl − 4i

(
Xα̂β̂ + Nα̂β̂

)
J ij , (9a)

[Dâ,D
j

β̂
] =

1

2

(
(Γâ)β̂

γ̂Sj
k −Xâb̂(Γ

b̂)β̂
γ̂δj

k −
1

4
εâb̂ĉd̂êN

d̂ê(Σb̂ĉ)β̂
γ̂δj

k + (Σâ
b̂)β̂

γ̂Cb̂
j
k

)
Dk

γ̂

+ curvature terms . (9b)

The dimension-1 components of the torsion, Sij, Xâb̂, Nâb̂ and Câ
ij, enjoy some additional

differential constraints implied by the Bianchi identities [8].

Let DÂ = (Dâ,D
i
α̂) be another set of covariant derivatives satisfying the constraints (6),

with Sij , Xâb̂, Nâb̂ and Câ
ij being the corresponding dimension-1 components of the torsion.

The supergeometries, which are associated with DÂ and DÂ, describe the same Weyl

multiplet if they are related by a super-Weyl transformation2 [8] of the form:

Di
α̂ = eσ

(
Di

α̂ + 4(Dβ̂iσ)Mα̂β̂ − 6(Dα̂jσ)J ij
)

, (10a)

Dâ = e2σ

(
Dâ + i(Γâ)

γ̂δ̂(Dk
γ̂σ)Dδ̂k − 2(Db̂σ)Mâb̂ +

i

4
(Γâ)

γ̂δ̂(Dk
γ̂Dl

δ̂
σ)Jkl

+
i

2
εâb̂ĉd̂ê(Σ

b̂ĉ)γ̂δ̂(D
γ̂kσ)(Dδ̂

kσ)M d̂ê +
5i

2
(Γâ)

γ̂δ̂(Dk
γ̂σ)(Dl

δ̂
σ)Jkl

)
. (10b)

The components of the torsion are related as follows:

Xĉd̂ = e2σ

(
X ĉd̂ −

i

2
(Σĉd̂)γ̂δ̂(D

γ̂kDδ̂
kσ) − 3i(Σĉd̂)γ̂δ̂(D

γ̂kσ)(Dδ̂
kσ)

)
, (11a)

Nĉd̂ = e2σ

(
N ĉd̂ − i(Σĉd̂)γ̂δ̂(D

γ̂kDδ̂
kσ) − 6i(Σĉd̂)γ̂δ̂(D

γ̂kσ)(Dδ̂
kσ)

)
, (11b)

Câ
jk = e2σ

(
C â

jk + i(Γâ)
α̂β̂(D

(j
α̂ D

k)

β̂
σ) − 2i(Γâ)

α̂β̂(D
(j
α̂ σ)(D

k)

β̂
σ)

)
, (11c)

Sij = e2σ

(
Sij +

i

2
(Dγ̂(iD

j)
γ̂ σ) − 3i(Dγ̂(iσ)(D

j)
γ̂ σ)

)
. (11d)

2In [8], only the infinitesimal super-Weyl transformation was explicitly given.
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Consider the super-Weyl tensor [8]

Wâb̂ := Xâb̂ −
1

2
Nâb̂ . (12)

It follows from eqs. (11a) and (11b) that it transforms homogeneously,

Wâb̂ = e2σ Wâb̂ . (13)

If the supergeometry DÂ is such that its super-Weyl tensor vanishes, Wâb̂ = 0, the same

property holds for the supergeometry DÂ. If the supergeometry DÂ is flat, the superge-

ometry DÂ will be called conformally flat.

Suppose that the two supergeometries under consideration are such that3

Câ
ij = C â

ij = 0 . (14)

Then, it follows from (11c) that the parameter σ is constrained. The relevant constraint

can be expressed in the form:

D
(i
α̂ D

j)

β̂
W0 −

1

4
εα̂β̂Dγ̂(iD

j)
γ̂ W0 = 0 , W0 := e−2σ . (15)

This is the equation for the field strength of an Abelian vector multiplet. In what follows,

we will assume the fulfillment of (14).

More generally, consider an arbitrary non-Abelian vector multiplet. Its field strength

W obeys the constraint

D
(i
α̂D

j)

β̂
W −

1

4
εα̂β̂D

γ̂(iD
j)
γ̂ W = 0 (16)

and possesses the super-Weyl transformation

W = e2σW . (17)

Associated with the vector multiplet is the composite superfield [8]

Gij := tr

{
iDα̂(iWD

j)
α̂ W +

i

2
WDijW − 2SijW2

}
, Dij := Dα̂(iD

j)
α̂ , (18)

which enjoys the equation

D
(i
α̂G

jk) = 0 (19)

and possesses the super-Weyl transformation

Gij = e6σGij . (20)

The explicit expression for W0, eq. (15), and the super-Weyl transformation law (17)

imply

W0 = 1 . (21)

3As observed in [8], the super-Weyl gauge freedom can always be used to choose the gauge Câ
ij = 0.
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Then, it follows from (18) and (20) that

Gij
0 = −2Sij = e6σGij

0 . (22)

The supergeometry corresponding to the 5D N = 1 anti-de Sitter superspace is char-

acterized by the following conditions [8] (see also [11]):

Câ
ij = 0 , Xâb̂ = Nâb̂ = 0 , Sij 6= 0 . (23)

Then, it follows from the Bianchi identities [8] that Sij is covariantly constant,

Dk
α̂S

ij = 0 . (24)

As argued in [12], in the family of five-dimenisonal N -extended anti-de Sitter superspaces

AdS5|8N =
SU(2, 2|N )

SO(4, 1) × U(N )
,

it is only the case N = 1 which corresponds to (locally) conformally flat supergeometry (al-

though no explicit construction was given in [12]). Below we will derive an explicit realiza-

tion for the 5D N = 1 anti-de Sitter superspace as a locally conformally flat supergeometry.

Let us look for a supersymmetric extension of the AdS5 metric in Poincaré coordinates4

d2s =

(
R

z

)2(
ηmndxmdxn + dz2

)
, R = const , m = 0, 1, 2, 3 (25)

with ηmn the four-dimensional Minkowski metric. The bosonic coordinates xm and z

are related to those used in the main body of this paper as xm̂ = (xm, z). Since the

supergeometry DÂ is flat, our first problem is to look for a real superfield W0(z, θµ̂
i ) which

solves eq. (15) for the vector multiplet field strength in flat superspace. There are at least

three ways to address this problem:

(i) brute-force approach;

(ii) harmonic superspace construction;

(iii) projective superspace construction.

In the first case, one starts with a general superfield W0(z, θµ̂
i ) and then tries to satisfy

eq. (15). In the second and third approaches, one starts with a useful ansatz for the

harmonic or projective prepotential for a 5D N = 1 vector multiplet, and then read off

the corresponding field strength following the rules given in [13, 14]. In all cases, it is

convenient to express the four-component Grassmann coordinates, θα̂
i , in terms of two-

components spinors (see [13] for more details, including the explicit expressions for the 5D

gamma-matrices in terms of the sigma-matrices etc.).

θα̂
i = (θα

i ,−θ̄.αi) , θi
α̂ =

(
θi
α

θ̄
.

αi

)
, θα

i = θ̄i
.

α
(26)

4These coordinates are known to cover one-half of the AdS hyperboloid.
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as well as to express the 5D N = 1 spinor covariant derivatives Di
α̂ (without central

charge) in terms of 4D N = 2 spinor covariant derivatives Di
α and D̄.

αi (with central

charge) following [13]

Di
α̂ =

(
Di

α

D̄
.

αi

)
, Dα̂

i = (Dα
i , −D̄.

αi) (27)

where

Di
α =

∂

∂θα
i

+ i (σb)αβ̇ θ̄
.

βi ∂b + θi
α∂z , D̄.

αi = −
∂

∂θ̄
.

αi
− i θβ

i (σb)β.α ∂b − θ̄.αi∂z . (28)

The most general expression for the field strength W0(z, θα
i , θ̄j

.

α
) can be shown to be:

W0 = A + i
(
θij − θ̄ij

)
Bij −

1

12

(
θ4 + θ̄4

)
∂2

zA + i θk
(iθ̄j)k∂zB

ij +
1

2
θij θ̄

ij∂2
zA

+
i

12

(
θ4θ̄ij − θij θ̄

4
)
∂2

zBij +
1

144
θ4θ̄4∂4

zA , (29)

where

θij := θα
i θαj , θ̄ij := θ̄i

.

α
θ̄
.

αj , θij = θ̄ij , θ4 := θijθij , θ̄4 := θ4 . (30)

Here A(z) and Bij(z) = Bji(z) are real functions of z,

A = A , Bij = Bij , (31)

but otherwise are completely arbitrary.

With W0 given as in eq. (29), we have satisfied the first constraint in (23). The next

problem is to solve the second constraint in (23), Xâb̂ = 0 or, equivalently, Nâb̂ = 0. Its

solution is as follows:

A(z) =
R

z
, Bij(z) = −

R

2z2
s

ij , s
ij :=

sij

√
1
2sijsij

, (32)

with

R = const , sij = sji = const , sij = sij . (33)

It is a short calculation to demonstrate that the covariantly constant torsion Sij is

Sij =
1

R
s

ij + O(θ) . (34)

This completes our explicit realization of AdS5|8 as (locally) conformally flat superspace.

Let us leave AdS5|8 for a while, and discuss the structure of a manifestly supersymmet-

ric action principle in the case of an arbitrary conformally flat superspace. In accordance

with the supergravity formulation developed in [8, 10], the supersymmetric action is gen-

erated by a covariant projective supermultiplet of weight two, L++(u+), which is defined

– 5 –
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to be holomorphic with respect to additional isotwistor variables u+
i ∈ C

2 \ {0}. The fact

that the Lagrangian is projective and has weight +2, means the following:

u+
i D

i
α̂L

++(u+) = 0 , L++(c u+) = c2 L++(u+) , c ∈ C \ {0} , (35)

see [8] for more details, including the reality condition of L++, L̃++ = L++, with respect

to the so-called smile conjugation. The action is

S(L++) =
1

6π

∮

C
(u+du+)

∫
d5xd8θ E

L++

(S++)2
, E−1 = Ber

(
EÂ

M̂
)

. (36)

Here C is a closed integration contour, S++(u+) := Siju+
i u+

j and (u+du+) := u+idu+
i .

Let us choose a coordinate system in which the covariant derivatives DÂ are related

to the flat global ones, DÂ, according to eqs. (10a)–(10b). We then have

E = e−2σ = W0 , −2S++ = W−3
0 G++

0 , (37)

with

G++
0 := Gij

0 u+
i u+

j = iDα̂+W0D
+
α̂ W0 +

i

2
W0D

α̂+D+
α̂ W0 , D+

α̂ G++
0 = 0 (38)

and D+
α̂ := Di

α̂u+
i . We also have

L++ = W−3
0 L++ , D+

α̂ L++ = 0 . (39)

Here L++(u+) is a rigid projective supermultiplet of weight +2 living in flat 5D N = 1

superspace R
5|8.

More generally, if Q(n)(u+) is a covariant projective supermultiplet of weight n,

u+
i D

i
α̂Q

(n)(u+) = 0 , Q(n)(c u+) = cn Q(n)(u+) , c ∈ C \ {0} , (40)

it is generated by a rigid projective supermultiplet of weight n, Q(n)(u+), living in R
5|8.

Q(n) = W
−3n/2
0 Q(n) , D+

α̂ Q(n) = 0 . (41)

The above action turns into5

S(L++) =
2

3π

∮

C
(u+du+)

∫
d5xd8θ

L++W 4
0

(G++
0 )2

. (42)

Using the identity [8]

D(+4)W 4
0 =

3

4
(G++

0 )2 , (D+)4 := −
1

96
εα̂β̂γ̂δ̂D+

α̂ D+

β̂
D+

γ̂ D+

δ̂
, (43)

5In general, the transformation (10a)–(10b) relating the “flat” and “curved” covariant derivatives, can

be defined only locally, as in the case of AdS5|8. Although the locally supersymmetric action (36) is globally

defined, its “flat” form (42) holds in general locally. In this paper, we do not discuss global issues.
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we can next transform S(L++) as follows:

S(L++) =
2

3π

∮

C

(u+du+)

(u+u−)4

∫
d5x (D−)4(D+)4

{
L++W 4

0

(G++
0 )2

}∣∣∣∣
θ=0

=
1

2π

∮

C

(u+du+)

(u+u−)4

∫
d5x (D−)4L++

∣∣∣∣
θ=0

. (44)

Here

(D−)4 := −
1

96
εα̂β̂γ̂δ̂D−

α̂ D−
β̂

D−
γ̂ D−

δ̂
, D−

α̂ := u−
i Di

α̂ , (45)

and the isotwistor u−
i introduced is constrained to obey the inequality (u+u−) 6= 0 (which

means that u+
i and u−

i are linearly independent) but otherwise is completely arbitrary.

It is possible to transform the action further and represent it as an integral over 4D

N = 1 superspace [14, 11]. First of all, we note that the action is invariant under arbitrary

projective transformations of the form

(ui
− , ui

+) → (ui
− , ui

+)R , R =

(
a 0

b c

)
∈ GL(2, C) . (46)

This symmetry implies that the action is actually independent of u−
i , and that the isotwistor

u+
i provides homogeneous coordinates for CP 1. Second, without loss of generality, we can

assume that the integration contour C does not intersect the north pole of CP 1. We thus

can chose

u+i = u+1(1, ζ) ≡ u+1ζi , u−
i = (1, 0) , (47)

as well as

L++(u+) = i(u+1)2ζ L(ζ) , (48)

with ζ the complex local coordinate parametrizing CP 1. Now, the constraint D+
α̂ L++ = 0

is equivalent to ζiDiα̂L(ζ) = 0. The latter can be used to rewrite (44) in the form:

S(L++) =
1

2πi

∮

C

dζ

ζ

∫
d5xd4θ L(ζ)

∣∣∣
θα
2
=0

. (49)

In this form, the supersymmetric action is given in terms of N = 1 superfields.6

If the Lagrangian L++ is independent of the vector multiplet associated with W0, then

the action (44) contains no information about the curved supergeometry, and thus (44)

describes a rigid superconformal theory of the general type studied in [14]. An example of

such theories is the general superconformal nonlinear sigma-model formulated in terms of

covariant arctic weight-one multiplets Υ+(u+) and their smile-conjugates Υ̃+ and described

by the Lagrangian [14, 11, 15]

L++ = iK(Υ+, Υ̃+) , (50)

6Eq. (49) is the 5D N = 1 version of the projective superspace action principle [16, 17].
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with K(ΦI , Φ̄J̄) a real analytic function of n complex variables ΦI , where I = 1, . . . , n. For

L++ to be a weight-two real projective superfield, it is sufficient to require

ΦI ∂

∂ΦI
K(Φ, Φ̄) = K(Φ, Φ̄) . (51)

Let us give an example of dynamical systems with the Lagrangian L++ depending

on the vector multiplet W0. Following [11, 9], consider the system of interacting covari-

ant arctic weight-zero multiplets Υ(u+) and their smile-conjugates Υ̃ described by the

Lagrangian

L++ =
1

2
S++

K(Υ, Υ̃) , (52)

with K(ΦI , Φ̄J̄) a real function which is not required to obey any homogeneity condition.

For this model, the line integral in (49) should be carried out around the origin. Because

Υ(u+) has vanishing weight, n = 0, eq. (41) means that Υ(u+) = Υ(ζ) is a rigid projective

supermultiplet. The corresponding flat-superspace form of the Lagrangian is

L++ = −
1

4
G++

0 K(Υ, Υ̃) . (53)

The action can be seen to be invariant under Kähler transformations of the form

K(Υ, Υ̃) → K(Υ, Υ̃) + Λ(Υ) + Λ̄(Υ̃) , (54)

with Λ(ΦI) a holomorphic function.

To describe the dynamics of Yang-Mills supermultiplets, we should introduce a gauge

field V0(u
+) for the Abelian vector multiplet W0 associated with our conformally flat su-

perspace. The V0(u
+) is a tropical weight-zero multiplet such that the field strength is

given as [14]

W0 =
1

16πi

∮
(u+du)

(u+u−)2
(D−)2 V0(u

+) , (D−)2 := D−α̂D−
α̂ . (55)

Since V0 has vanishing weight, n = 0, eq. (41) means that V0(u
+) = V0(ζ) is invariant

under the super-Weyl transformations, i.e. V0 = V0. The field strength W0 is invariant

under the gauge transformations

V0 → V0 + λ + λ̃ , (56)

with λ(u+) an arbitrary arctic weight-zero superfield. Let W be the gauge-covariant field

strength of a Yang-Mills supermultiplet, and V(u+) is a gauge field (i.e. a tropical weight-

zero multiplet taking its values in the Lie algebra of the gauge group). Then, we can

construct the covariant projective weight-two multiplet

G++(u+) := Giju+
i u+

j , (57)

with Gij given in (18). Dynamics of the Yang-Mills supermultiplet can be described by the

Lagrangian

L++
YM =

1

g2
V0 G

++ + κG++
0 trV , (58)

– 8 –



J
H
E
P
0
6
(
2
0
0
8
)
0
9
7

with g and κ the coupling constants. The corresponding action can be seen to be invariant

under the gauge transformations (56). The second term in (58) is a Fayet-Iliopoulos term.

If the Kähler potential K(ΦI , Φ̄J̄) in (53) corresponds to a Kähler manifold with isome-

tries, on can gauge the sigma-model following [20]. In particular, one can generate “mas-

sive” sigma-models if the gauging is carried out using the frozen vector multiplet V0(ζ).

As follows from (53), all information about the curved superspace geometry is now

encoded in G++
0 (u+) = Gij

0 u+
i u+

j . In the case of the anti-de Sitter superspace AdS5|8, this

superfield can be shown to be

G++
0 (u+) = −

2R2

z3
c

{
s

++ −
3i

zc

(
(θ+)2 − (θ̄+)2

)
−

3

zc(u+u−)

(
(θ+)2 + (θ̄+)2

)
s

+−

+
12

z2
c (u

+u−)2
(θ+)2(θ̄+)2s−−

}
. (59)

Here s
±± = s

iju±
i u±

j ,

zc = z −
1

(u+u−)

(
θ+θ− + θ̄+θ̄−

)
, (60)

and θ±α = θi
αu±

i and θ̄±.
α

= θ̄i
.

α
u±

i . The variables zc, θ+
α and θ̄+

.

α
, which appear in the right-

hand side of (59), are annihilated by D+
α̂ , that is, they are analytic in the sense of the 5D

N = 1 version [13] of the harmonic superspace approach [18, 19]. One can check that G++
0

is independent of u−,
∂

∂u−
G++

0 = 0 , (61)

in spite of the fact that separate contributions to the right-hand side of (59) do depend on

u−.

Let us now represent G++
0 (u+), eq. (59), as

G++
0 (u+) = i(u+1)2ζ G0(ζ) . (62)

Instead of giving the complete expression for G0(ζ), it is sufficient to consider G0(ζ) in

the limit of θα
2 = θ̄

2
.

α
= 0, since only this truncated expression for G0(ζ) appears in the

action (49). Defining

θα := θα
1 , θ̄.α := θ

1
.

α
, (63)

a short calculation gives

G0(ζ)|θ2=0 =
2iR2

z3

{(
ζs

11 − 2s12 +
1

ζ
s

22

)
+

3

z
θ2

(
s

11 −
1

ζ
(s12 + i)

)

+
3

z
θ̄2
(
− s

22 + ζ(s12 + i)
)

+
12

z2
θ2θ̄2(s12 + i)

}
. (64)

For completeness, we also give the expression for W0 in the limit of θα
2 = θ̄

2
α̇ = 0.

W0|θ2=0 =
R

z
−

iR

2z2

(
θ2

s
11 − θ̄2

s
22
)
−

iR

z3
θ̄2θ2(s12 + i) . (65)
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Up to an SU(2) rotation, one can always choose s
ij to have the form:

s
11 = s

22 = 0 ⇐⇒ s
12 = ±i . (66)

Now, it follows from (64) and (65)

s
12 = −i =⇒ W0|θ2=0 =

R

z
, G0(ζ)|θ2=0 = −

4R2

z3
. (67)

It is seen that the superfields W0|θ2=0 and G0(ζ)|θ2=0 are invariant under the standard 4D

N = 1 super-Poincaré transformations.

It is not difficult to see that the second solution, s
12 = i, in eq. (66) simply corresponds

to the replacement (θα
1 , θ̄

1
.

α
) → (θα

2 , θ̄
2
.

α
) in the above consideration. In particular, we have

s
12 = i =⇒ G0(ζ)|θ1=0 =

4R2

z3
. (68)

With the choice (67), the action (49) generated by (53) becomes

S =
1

R

∮

C

dζ

2πiζ

∫
d5xd4θ

(
R

z

)3

K(Υ, Υ̃) . (69)

Here the dynamical variables are

Υ(ζ) =
∞∑

n=0

Υn ζn = Φ + ζΣ + . . . , Υ̃(ζ) =
∞∑

n=0

(−1)n

ζn
Ῡn = Φ̄ −

1

ζ
Σ̄ + . . . , (70)

where the two leading components of Υ(ζ) are constrained 4D N = 1 superfields,

D̄
.

α Φ = 0 , −
1

4
D̄2 Σ = ∂z Φ . (71)

The other components of Υ(ζ) are complex unconstrained superfields, and they appear to

be non-dynamical (auxiliary) in the model under consideration.

In the free case,

K(Υ, Υ̃) = R Υ̃Υ , (72)

one can easily do the contour integral in (69) to result with

S =

∫
d5xd4θ

(
R

z

)3 (
Φ̄Φ − Σ̄Σ

)
+ . . . (73)

where the omitted terms involve the auxiliary superfields. The latter terms vanish on the

equations of motion for the auxiliary superfields. The quadratic action obtained can be

shown to agree (upon implementing a superfield Legendre transformation that converts Σ

into a chiral superfield) with the model previously constructed in [21] (see also [22]) by

rewriting supersymmetric component actions in AdS5 in terms of 4D N = 1 superfields.

Since the explicit z-dependence in (69) is not accompanied by any ζ-dependence, the

auxiliary superfields can be eliminated in the AdS5 case in the same way it has been done

in the flat global case for a large class of nonlinear sigma-models, see e.g. [23].
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To describe off-shell massive hypermultiplets living in AdS5|8, it is necessary to have

at our disposal a gauge field V0(ζ) that generates the corresponding field strength W0.

Assuming the SU(2) choice (66), one can check that V0(ζ) can be chosen to be

V0(ζ) =
R

zcζ

(
θ

2(ζ) − θ̄
2
(ζ)
)

+
iR

z2
c ζ

2
θ

2(ζ)θ̄
2
(ζ)s12 , (74)

where

θ
α(ζ) = −ζθα

2 − θα
1 , θ̄.α(ζ) = −ζθ̄

1
.

α
+ θ̄

2
.

α
,

zc = z + (θ12 − θ̄12) + ζ(θ22 + θ̄11) . (75)

The corresponding field strength (55) can be checked to agree with (32). Projecting to the

4D N = 1 superfields gives

V0|θ2=0 =
R

z

(
1

ζ
θ2 − ζθ̄2

)
+

iR

z2
θ2θ̄2(s12 + i) , (76)

and therefore

s
12 = −i =⇒ V0|θ2=0 =

R

z

(
1

ζ
θ2 − ζθ̄2

)
. (77)

The massive hypermultiplet Lagrangian is obtained by replacing (72) with

K(Υ, Υ̃, V0) = R Υ̃ emV0Υ , (78)

with m the hypermultiplet mass. This model is invariant under gauge transformations

V0 → V0 + λ + λ̃ , Υ → e−mλΥ , (79)

with the gauge parameter λ(ζ) an arctic superfield. In conclusion, we note that the pre-

potential (74) should be used in the Lagrangian (58) to describe the dynamics of the

Yang-Mills supermultiplet in AdS5|8.
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